rev 1.5

Low Power Peak Reducing EMI Solution

Features

- Generates an EMI optimized clock signal at the output.
- Integrated loop filter components.
- Operates with a $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$ Supply.
- Operating current less than 4 mA .
- Low power CMOS design.
- Input frequency range: 13 MHz to 30 MHz for 2.5 V
: 13 MHz to 30 MHz for 3.3 V
- Generates a 1X low EMI spread spectrum clock of the input frequency.
- Frequency deviation: $\pm 1 \%$ @ 24 MHz
- Available in 6-pin TSOT-23, 8-pin SOIC and 8-pin TSSOP packages.

Product Description

The ASM3P2879A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2879A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The ASM3P2879A allows significant system cost savings by reducing the number of circuit board layers ferrite beads, shielding that are traditionally required to pass EMI regulations.

The ASM3P2879A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.

The ASM3P2879A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation'.

Applications

The ASM3P2879A is targeted towards all portable devices with very low power requirements like MP3 players, Notebooks and digital still cameras.

Key Specifications

Description	Specification
Supply voltages	$\mathrm{VDD}=2.5 \mathrm{~V} / 3.3 \mathrm{~V}$
Cycle-to-Cycle Jitter	200 pS (Max)
Output Duty Cycle	$45 / 55 \%$
Modulation Rate Equation	$\mathrm{F}_{\mathrm{IN}} / 640$
Frequency Deviation	$\pm 1 \% @ 24 \mathrm{MHz}$

January 2007
rev 1.5
Pin Configuration (6-pin TSOT-23 Package)

Pin Description

Pin\#	Pin Name	Type	Description
1	REFOUT	O	Buffered output of the input frequency.
2	XOUT	O	Crystal connection. If using an external reference, this pin must be left unconnected.
3	XIN/CLKIN	I	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.
4	VDD	P	Power supply for the entire chip (3.3V)
5	ModOUT	O	Spread spectrum clock output.
6	VSS	P	Ground connection.

Pin Configuration (8-pin SOIC and TSSOP Packages)

Pin Description

Pin\#	Pin Name	Type	Description
1	XIN/CLKIN	I	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.
2	XOUT	O	Crystal connection. If using an external reference, this pin must be left unconnected.
3	REFOUT	O	Buffered output of the input frequency.
4	NC	-	No connect.
5	VSS	P	Ground connection.
6	ModOUT	O	Spread spectrum clock output.
7	NC	-	No connect.
8	VDD	P	Power supply for the entire chip

January 2007
rev 1.5

Modulation Profile

Specifications

Description		Specification
Frequency Range	For 2.5V Supply	$13 \mathrm{MHz}<$ CLKIN $<30 \mathrm{MHz}$
	For 3.3V Supply	$13 \mathrm{MHz}<\mathrm{CLKIN}<30 \mathrm{MHz}$
Modulation Equation	$\mathrm{F}_{\text {IN }} / 640$	
Frequency Deviation	$\pm 1 \% @ 24 \mathrm{MHz}$	

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
$\mathrm{VDD}, \mathrm{V}_{\text {IN }}$	Voltage on any pin with respect to Ground	-0.5 to +4.6	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Operating temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
T_{s}	Max. Soldering Temperature (10 sec)	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {DV }}$	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	KV
Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.			

January 2007
rev 1.5
DC Electrical Characteristics for 2.5V Supply
(Test condition: All parameters are measured at room temperature $\left(+25^{\circ} \mathrm{C}\right)$ unless otherwise stated)

Symbol	Parameter	Min	Typ	Max	Unit
VIL	Input low voltage	VSS - 0.3	-	0.8	V
V_{IH}	Input high voltage	2.0	-	VDD + 0.3	V
$1 /{ }_{\text {IL }}$	Input low current	-	-	-35	$\mu \mathrm{A}$
IIH	Input high current	-	-	35	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{XOL}}$	XOUT output low current (@0.5V, VDD=2.5V)	-	3	-	mA
$\mathrm{I}_{\text {хOH }}$	XOUT output high current (@1.8V, VDD=2.5V)	-	3	-	mA
$\mathrm{V}_{\text {OL }}$	Output low voltage (VDD $=2.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$)	-	-	0.6	V
V_{OH}	Output high voltage (VDD $=2.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA}$)	1.8	-	-	V
IDD	Static supply current *	-	1.2	-	mA
Icc	Dynamic supply current (2.5V, 24MHz and with no load)	-	3.5	-	mA
VDD	Operating Voltage	2.375	2.5	2.625	V
t_{on}	Power-up time (first locked cycle after power-up)	-	-	5	mS
$\mathrm{Z}_{\text {OUT }}$	Output impedance	-	50	-	Ω
* XIN/CLKIN pin is pulled low					

AC Electrical Characteristics for 2.5V Supply

Symbol	Parameter		Min	Typ	Max	Unit
CLKIN	Input frequency		13	-	30	MHz
ModOUT	Output frequency		13	-	30	MHz
f_{d}	Frequency Deviation	Input Frequency $=13 \mathrm{MHz}$	-	± 1.75	-	\%
		Input Frequency $=30 \mathrm{MHz}$	-	± 0.80	-	
$\mathrm{t}_{\text {LH }}{ }^{\text {* }}$	Output rise time (measured from 0.7 V to 1.7 V)		0.8	1.7	1.9	nS
$\mathrm{t}_{\mathrm{HL}}{ }^{\text {* }}$	Output fall time (measured from 1.7V to 0.7 V)		0.5	0.9	1.2	nS
t_{Jc}	Jitter (cycle to cycle)		-	-	200	pS
t_{D}	Output duty cycle		45	50	55	\%

[^0]January 2007
ASM3P2879A
rev 1.5
DC Electrical Characteristics for 3.3V Supply
(Test condition: All parameters are measured at room temperature $\left(+25^{\circ} \mathrm{C}\right)$ unless otherwise stated)

Symbol	Parameter	Min	Typ	Max	Unit
VIL	Input low voltage	VSS - 0.3	-	0.8	V
V_{IH}	Input high voltage	2.0	-	VDD + 0.3	V
$1 /{ }_{\text {IL }}$	Input low current	-	-	-35	$\mu \mathrm{A}$
IIH	Input high current	-	-	35	$\mu \mathrm{A}$
$\mathrm{I}_{\text {XOL }}$	XOUT output low current (@0.4V, VDD=3.3V)	-	3	-	mA
$\mathrm{I}_{\text {хOH }}$	XOUT output high current (@2.5V, VDD=3.3V)	-	3	-	mA
$\mathrm{V}_{\text {OL }}$	Output low voltage (VDD $=3.3 \mathrm{~V}$, $\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$)	-	-	0.4	V
V_{OH}	Output high voltage (VDD $=3.3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA}$)	2.5	-	-	V
IDD	Static supply current *	-	1.2	-	mA
ICC	Dynamic supply current (3.3V, 24MHz and with no load)	-	4.5	-	mA
VDD	Operating Voltage	2.7	3.3	3.6	V
ton	Power-up time (first locked cycle after power-up)	-	-	5	mS
$\mathrm{Z}_{\text {OUT }}$	Clock output impedance	-	45	-	Ω
* XIN/CLKIN pin is pulled low					

AC Electrical Characteristics for 3.3V Supply

Symbol	Parameter		Min	Typ	Max	Unit
CLKIN	Input frequency		13	-	30	MHz
ModOUT	Output frequency		13	-	30	MHz
f_{d}	Frequency Deviation	Input Frequency $=13 \mathrm{MHz}$	-	± 1.75	-	\%
		Input Frequency $=30 \mathrm{MHz}$	-	± 0.80	-	
tLH*	Output rise time (measured from 0.8 to 2.0 V)		0.6	1.6	1.8	nS
$\mathrm{tHL}^{*}{ }^{\text {a }}$	Output fall time (measured at 2.0 V to 0.8 V)		0.4	1.0	1.2	nS
t_{sc}	Jitter (cycle to cycle)		-	-	200	pS
$t_{\text {D }}$	Output duty cycle		45	50	55	\%
and $\mathrm{t}_{\text {L-L }}$ are me	into a capacitive load of 15pF					

January 2007

rev 1.5

Typical Crystal Oscillator Circuit

Typical Crystal Specifications

Fundamental AT cut parallel resonant crystal	14.31818 MHz
Nominal frequency	± 50 ppm or better at $25^{\circ} \mathrm{C}$
Frequency tolerance	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	18 pF
Load capacitance	7 pF maximum
Shunt capacitance	25Ω
ESR	

January 2007
ASM3P2879A
rev 1.5

Package Information

6-pin TSOT-23 Package

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
A		0.04		1.00
A1	0.00	0.004	0.00	0.10
A2	0.033	0.036	0.84	0.90
b	0.012	0.02	0.30	0.50
H	0.005 BSC		0.127 BSC	
D	0.114 BSC		2.90 BSC	
B	0.06 BSC		1.60 BSC	
e	0.0374 BSC		0.950 BSC	
C	0.11 BSC		2.80 BSC	
L	0.0118	0.02	0.30	0.50
θ	0°	4°	0°	4°

8-Pin SOIC Package

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
A1	0.004	0.010	0.10	0.25
A	0.053	0.069	1.35	1.75
A2	0.049	0.059	1.25	1.50
B	0.012	0.020	0.31	0.51
C	0.007	0.010	0.18	0.25
D	0.193 BSC		4.90 BSC	
E	0.154 BSC		3.91 BSC	
e	0.050 BSC		1.27 BSC	
H	0.236 BSC		6.00 BSC	
L	0.016	0.050	0.41	1.27
θ	0°	8°	0°	8°

8-Pin TSSOP Package

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
A		0.043		1.10
A1	0.002	0.006	0.05	0.15
A2	0.033	0.037	0.85	0.95
B	0.008	0.012	0.19	0.30
c	0.004	0.008	0.09	0.20
D	0.114	0.122	2.90	3.10
E	0.169	0.177	4.30	4.50
e	0.026 BSC			0.65 BSC
H	0.252 BSC			6.40 BSC
L	0.020	0.028	0.50	0.70
θ	0°	8°	0°	8°

January 2007
ASM3P2879A
rev 1.5
Ordering Information

Part Number	Marking	Package Type	Temperature
ASM3P2879AF-06OR	D4LL	6-Pin TSOT-23, TAPE \& REEL, Pb Free	Commercial
ASM3P2879AF-08TT	3P2879AF	8-Pin TSSOP, TUBE, Pb Free	Commercial
ASM3P2879AF-08TR	3P2879AF	8-Pin TSSOP, TAPE \& REEL, Pb Free	Commercial
ASM3P2879AF-08ST	3P2879AF	8-Pin SOIC, TUBE, Pb Free	Commercial
ASM3P2879AF-08SR	3P2879AF	8-Pin SOIC, TAPE \& REEL, Pb Free	Commercial
ASM3P2879AG-06OR	D3LL	6-Pin TSOT-23, TAPE \& REEL, Green	Commercial
ASM3P2879AG-08TT	3P2879AG	8-Pin TSSOP, TUBE, Green	Commercial
ASM3P2879AG-08TR	3P2879AG	8-Pin TSSOP, TAPE \& REEL, Green	Commercial
ASM3P2879AG-08ST	3P2879AG	8-Pin SOIC, TUBE, Green	Commercial
ASM3P2879AG-08SR	3P2879AG	8-Pin SOIC, TAPE \& REEL, Green	Commercial
ASM3I2879AF-06OR	D5LL	6-Pin TSOT-23, TAPE \& REEL, Pb Free	Industrial
ASM3I2879AF-08TT	3I2879AF	8-Pin TSSOP, TUBE, Pb Free	Industrial
ASM3I2879AF-08TR	3I2879AF	8-Pin TSSOP, TAPE \& REEL, Pb Free	Industrial
ASM3I2879AF-08ST	3I2879AF	8-Pin SOIC, TUBE, Pb Free	Industrial
ASM3I2879AF-08SR	3I2879AF	8-Pin SOIC, TAPE \& REEL, Pb Free	Industrial
ASM3I2879AG-06OR	D6LL	6-Pin TSOT-23, TAPE \& REEL, Green	Industrial
ASM3I2879AG-08TT	3I2879AG	8-Pin TSSOP, TUBE, Green	Industrial
ASM3I2879AG-08TR	3I2879AG	8-Pin TSSOP, TAPE \& REEL, Green	Industrial
ASM3I2879AG-08ST	3I2879AG	8-Pin SOIC, TUBE, Green	Industrial
ASM3I2879AG-08SR	3I2879AG	8-Pin SOIC, TAPE \& REEL, Green	Industrial

rev 1.5

Device Ordering Information

rev 1.5

Pulsecire
 Giving you the edge

PulseCore Semiconductor Corporation
1715 S. Bascom Ave Suite 200
Campbell, CA 95008
Copyright © PulseCore Semiconductor
All Rights Reserved

Tel: 408-879-9077
Part Number: ASM3P2879A
Fax: 408-879-9018
www.pulsecoresemi.com

Note: This product utilizes US Patent \# 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003
© Copyright 2007 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.

[^0]: ${ }^{*} t_{L H}$ and $t_{H L}$ are measured into a capacitive load of 15 pF

